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SOME QUESTIONS OF ERDOS AND GRAHAM 
ON NUMBERS OF THE FORM E gnj2gn 

P. B. BORWEIN AND T. A. LORING 

ABSTRACT. Erdos in 1975 and Erdos and Graham in 1980 raised several ques- 
tions concerning representing numbers as series of the form EZn gn129n . For 
example, does the equation 

T 

2 n = E 2 v T > 1, 
ki 

have a solution for infinitely many n ? The answer to this question is affirma- 
tive; in fact, we conjecture that the above equation is solvable for every n . This 
conjecture is based on a more general conjecture, namely that the algorithm 

an+1 = 2(an modn) 

with initial condition ain E Z always eventually terminates at zero. This, in 
turn, is based on an examination of how the "greedy algorithm" can be used to 
represent numbers in the form E gn129n . The analysis of this, reformulated as 
a "base change" algorithm, proves surprising. Some numbers have a unique rep- 
resentation, as above, others have uncountably many. Also, from this analysis 
we observe that E gn/2gn is irrational if limsupn((gn+ -gn)/ log(gn+1)) = o? 
and conjecture that this is best possible. 

1. INTRODUCTION 

In [3] Erdbs and Graham raise the following three questions. Does the equa- 
tion 

( 1.1 ) n = E gk T> 1, 

k~ 1 

have a solution for infinitely many n ? For all n ? (Here, {gn} is a strictly 
increasing sequence of positive integers.) Is there a rational x for which 

(1.2) x= ZE 2 

has two solutions? Does there exist a rational x for which 

(1.3) x= E 2 
k=1 
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and for which 
lim sup(g1+ -gn) = oc? 

n 

They speculate that the answer is positive to the last question. This would be 
best possible. In [1] Erdbs resolves a twenty-year-old problem by showing that 

(1.4) gn with lim(gn+l -gn) =oo 

is irrational. He asks in [2] whether the greedy algorithm always generates 
a representation for a rational x with gn+1 - gn bounded. We discuss this 
further in ?3. 

We choose to approach these problems from the following point of view. 
Given 

(1.5) C E 2 n bn 0, I 

n=1 

how can we represent a as 

0.0nd 
(1.6) a=3 2' n d =O,1? 

n=1 

We call a representation of a as in (1.6) a *-binary representation and call dn 
the nth *-binary digit. It is in this sense that we think of the above problems as 
being "base change" problems. From this point of view the following questions 
are suggested. 

[Q11 Does every a c [0, 2] have a *-binary representation? 
The answer, as observed in [ 1], is that the "greedy algorithm" always provides 

such a representation. In this context the greedy algorithm is the algorithm that, 
inductively, sets dN := 1 if >XN1 ndn/2n < a and sets dN := 0 otherwise. 
This algorithm, as we shall see, converges. In ?2 we offer two reformulations of 
the greedy algorithm that are more amenable to analysis. The second natural 
question is: 

[Q21 When does a c [0, 2] have a unique *-binary representation? 
It is apprarent from the existence of nontrivial solutions to (1.1) (see Proposi- 

tion 1) that *-binary representations are not always unique. Uniqueness is, how- 
ever, possible. For example, 1/72 has a unique *-binary representation. Other 
numbers have uncountably many different *-binary representations. Unique- 
ness questions will be primarily dealt with in ?3. In particular, there is a sys- 
tematic way of modifying the "base change" algorithm of ?2 to generate all 
representations. 

The third natural question is: 

1Q31 When does a have a finite *-binary representation? 
This is a question in Diophantine equations. It asks when we can solve 

N. nd 
(1.7) ae n2 d = 0 or 1. 

n=l 
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Clearly, a must be an exact binary fraction for such a solution to exist. We 
conjecture, perhaps surprisingly, that this is also sufficient. This, as we shall see, 
follows from the following conjecture. 

Conjecture 1. Let q be any integer. Let 

am := ? and an+l := 2(an modn), n = m, m 1,... 

(where (a mod n) is always chosen in the interval [0, n - 1]). Then for some 
Nm there holds an =0 , for n > Nm (that is, the above iteration always 
terminates). 

This conjecture, if true, also totally resolves the third question of Erdos ((1.3) 
above) by showing that every diadic rational has a representation of the form 
(1.3) with arbitrarily large gaps (i.e., strings of zeros). The evidence for Con- 
jecture 1, and a discussion of its consequences, is the content of ?5. Section 4 
concerns arbitrary base analogues of these questions. 

2. THE BASE CHANGE ALGORITHM 

The two reformulations of the greedy algorithm we offer are: 

Algorithm 1. Let 

E n b = 0, 1. 
n~ 1 n=l 

Let 
al := b1 and an+1 := 2(an mod n) + bn 

(where (an mod n) is chosen in [O, n - 1]). Then 

0.0nd 
a = Z n 

n=l 

where 

d 0? if an <n, 
n I if a > n. 

Algorithm 2. Let a c [O, 2). Let el = 2a and 

_f2(en-n) ifen>n, 
eni- 2e if e < n. 

Then 
0.0nd 

a = Z n 

n=l 

where 
d _ 0 if en < n , 

- I if en > n . 

In fact, if a c [O 1) (and that in the event a is an exact binary fraction it 
is represented by its terminating representation) then Algorithms 1 and 2 have 
the same output. In this case, an = int part(en). 
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We shall sometimes refer to this representation as the canonical *-binary 
representation. Observe that Algorithm 1 is very efficient, both practically and 
theoretically. The bit complexity of converting n binary digits to n *-binary 
digits is O(n log n) (which is better than the best known algorithm for converting 
base 2 to base 3 or, for that matter, multiplication [4]). 

Proof of Algorithm 1. Let {15,} be any sequence of zeros and ones. Then 

(2.1) n-i m5M 
(2.1)~~~~~~ ~2m~ 2n +E 2m 

m=2 m=n+I 

where 
al =b 

and 

(2.2) an+I := 2(an- 5nn) + bn+l 

This is easily verified by induction on n and the observation that 

2n(5n = 2an- an+1 + bn+1 

or equivalently 
n a(5 _ an ? bn+I 

2n 2n+1 2 n 2n+1 

If we now inductively define {5n} and {an} by 

al :bj , 

(5 ._|0 if an < n, 
n l1 if a > n 

and 
an+l I 2(an mod n) + b?n 

then we derive Algorithm 1. The proof of convergence of Algorithm 1 now is 
reduced to showing that in (2. 1) 

a /2 )- 0. 

However, by construction, 

an+1 < 2(n - 1) + 1 = 2n - 1, 

and we are done. 
That this algorithm is actually the greedy algorithm (except for nonterminat- 

ing representations of diadic rationals) follows from the inequality 

(2.3) 5n-l m a 0c b 2n -3 1 n-1 
2-Z 22 n 2 2~ ?2f2n 

m=l m=n+l 
which shows, again inductively, that at every n, every term that can be included 
in the representation has been included. D 

Proof of Algorithm 2. Algorithm 2 is easily reduced to Algorithm 1 on writing 
= = Zn1? bn/2n (using the terminating representation if possible). One need 
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only observe that the remainder Zn?=N+l bn/2n has no effect on the Nth step 
of the algorithm. D 

Corollary 1. Conjecture 1 implies that every diadic rational has a terminating 
*-binary representation. 

Proof. If a = En=I bn/2 , then for m > M, Algorithm 1 reduces to the 
algorithm of Conjecture 1. D 

We now wish to exhibit an infinite class of m for which 

mr-I T k 
_= z -k 

2m-1 k=m 2 

thus resolving the first question of the introduction. The approach is the fol- 
lowing. Since 

m-i 2m-2 m m-2 
(2.4) 2m = 2 

2m 1 2m 2m 2 mX 

we have 

(2.5) 
m- 1=m + E ndn 
2m-1 2TT?Z 2 n 

n>m+1 

where the dn are the output of Algorithm 1 applied to (m - 2)/2m. The 
corresponding {ai} are generated by 

(2.6) am:= m - 2 

and 
an+ :=2(an mod n). 

Observe, for large m, that the initial few terms am, am+1i am+2, ... are 

(2.7) m-2, 2m-4, 2m-10, 2m-24, ... 

where, if 

(2.8) an+k :=2m- (k>m+k, 

then 
an+l - 2(2m - 3k mod m+k) = 2m -25k - 2k. 

So 

(2.9) bk+l = 25k + 2k where 50 = 2. 

Suppose for some K that 
afn+K = m + K 

while 
ain+k > m + k, k < K. 

Then Algorithm 1 outputs a sequence of di with 

d nld = dtn?2 = ... = dtnK1 1 
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and all other d1 = 0 and produces a *-representation of (m - 1)/2m1 of the 
requisite form. The trick now is to solve the recursion (2.9) for 5k . If 

00 

f (x) = Z5kX , 
k=1 

then 

(2.10) f(x) =2f(x) + 2kx? + 
k=1 

or, after some effort, 

(2.11) f(X)=4x+2 (2k+2 - 2(k + 1))x 

In particular, 

am+K =2m+2(K+ 1) -2K+2 = m+K 
exactly when 

(2.12) m - 2(K+2) - (K + 2) 

for some K. Packaging this, yields: 

Proposition 1. For m = 2M - M, M > 2, there holds 

rnI m+M-2 k 
(2.13) 2m kE 2 

This derivation of Proposition 1 also shows that no other identities of the 
form 

c-1 _ k 

21 k- c 2 

exist. Of course, (2.13), once discovered, can be proved directly. From the 
identity 

k=A (1 ) (1 ) 
we have 

zk k X A(A-Ax+x)_x (B-Bx+x) 

k=A (X- 1)2 
and 

B1k A +I B?+1 
(2.14) E 2k 2A-I B- I 

k-A 2 2A- 2B 

Proposition 1 now follows from (2.14) on setting A := 2m - M, B = 2M 
and C = 2M - M- 1, whence 

C A + I B + I1 
- 

k C_ A= B v Bl 
2C -2A-1 2B- 1 '2k 2-1 B-1 Ek-4 
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From Proposition 1 it is clear that *-binary representations are not unique, 
and thus not every *-binary representation arises as the output of the greedy 
algorithm. We shall see in ?5 that for terminating representations the greedy 
algorithm does not necessarily generate the shortest representation. 

Proposition 2. Suppose a c [0, 1) has the (canonical) *-binary and binary 
representations 

CE nn =E bn d bn =0?, 1 . a=Z 2n5=Zj5 n 
n=1 n=1 

Let Zm (a) denote the length of the longest consecutive string of zeros among the 
first m of the di, and let Om (a) denote the longest such string of ones. Let 
Zm (a) and O, (a) denote the corresponding counts for the bi . Then, 

O, (a) < 1 + 10og2 m + o,(a) and Zm(a) < 1 + 1og2 m + Zm (a) 

Proof. (We do not need to assume we are using the canonical representation, 
but then we must use Proposition 4 of the next section.) The longest possible 
string of zeros in the output of Algorithm 1 arises from 

am-s = an-s+l ==am-l= and am = l, bm = =bm+k = ? 

with 

a+ 2a, < m+ ,..., am 2kam < m+k. 

The first sequence above is of length less than or equal Zm (a), since the ai 
can only stay at zero if the corresponding b, are zero. The number of terms 
following am = 1 for which dm = 0 is less than the smallest K for which 
2 K> m + K. Since K = 1 + 10g2 m satisfies the above, we are done. 

A similar argument applies for Om. ? 

Corollary 2. If a is rational, then for some constant C, 

Om(a) < log2(m) + C, 

and if a is not a diadic rational, then for some constant D, 

Zm (a) < 10g2 (m) + D. 

Corollary 2 has an easy direct proof: if a has gaps of length > log n at the 
nth *-digit, then 

2na = integer + 0(1) 

and a cannot be rational. 

3. MULTIPLE REPRESENTATIONS 

Consider the numbers 

(3.1) BM :=n _2'n- = Z 2g 
m=M2m=M 
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where gm := 2 - m - 1. Then there is a systematic way of replacing each 

gs,,29,,, term using the identity (2.13), namely 

g +m-1 k gm - z: 

k-gn+ 12 

Since there are infinitely many independent choices to make, the total number 
of resulting representations is uncountable. 

Proposition 3. (a) There exists a dense set of irrational, each with uncountably 
many different *-binary representations. 

(b) If Conjecture 1 holds, then every diadic rational has infinitely many ter- 
minating representations (so that the Diophantine equation (1.7) has infinitely 
many solutions). 

(c) Let A := [0, 1] - {diadic rationals}. The set of a c A with more than 
k different *-binary representations is open and dense in A (in the topology on 
A ). 

(d) If Conjecture 1 holds, then the set of a c [0, 1] with more than k different 
*-binary representations is open and dense in [0, 1]. 
Proof. Part (a) follows from the observation that any number of the form 

innd 
(3.2) E 2nn + BM, m < M,~ BM as in (3. 1), 

n= 1 

has uncountably many different representations. Since by construction and 
Corollary 2, BM is irrational, it follows that the above numbers are irrational. 
The denseness of numbers of the form (3.2) follows from the fact that 

lim BM = 0 
M--+00 

and the observation that (2.3) of Algorithm 1 guarantees that 

{x = nn dn = 0 1} 

is dense in [0, 1]. 
For part (b) we observe, as in (2.5), that 

m- I _ m + ndn 
2/n- I in7 z n2 2 i 2 ,n>n+ 1 

n~~m~~l 
where the sum is the output of Algorithm 1 applied to (m-2)/2'". If Conjecture 
1 holds, this sum is finite. In particular, each finite representation of a diadic 
rational can be extended to a new finite representation just by using the above 
procedure to rewrite the highest nonzero term. The finiteness at each stage 
follows from the conjecture, as in Corollary 1. 

Part (c) and part (d) would be the same if we knew that every diadic rational 
had infinitely many different *-binary representations. (Our problem is dealing 
with representations that end in an infinite string of ones, which by (2.14) can 
only occur for diadic rationals.) We prove openness as follows. Suppose a E A 
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has k + 1 different *-representations. Then, for some N1 , these representations 
all differ at one of the first N1 "digits". Furthermore, for some N2 > N1, 
each of these representations has a zero "digit" between N1 and N2 (here we 
have used the assumption that a is not diadic-if we knew that a diadic had 
infinitely many different *-representations we could proceed anyway). Thus for 
a particular one of these representations of a, we have 

N3 -1nd 00 d 
a n ~z nd1 

(a :=Z 
E nn + E n 

n=2 n=N3+1 

where N1 < N3 < N2 is a zero term for this representation. We now show that 
if 

1031 1 
2N3 

then 
N3- -1d 0. d 

(3.3) A EZ n + nEn2d 
ni 

n 

n=1 n=N 
2 

and thus /? has a representation with the same N1 initial terms as ao. To do 
this, we observe that 

Thus, Algorithm 1, applied to fi - Zn1 l 12 dn/212, generates no nonzero terms 
until after the (N3 - 1 )st digit. In particular, 

N3l d o d*n 

d n 1: n <2n 2N + 

n=1 n=l N3+1 
N-N 

and we are done. D 

We will show presently that there exist infinitely many (nondiadic) rationals 
with unique *-representations. 

We now present a nondeterministic algorithm for constructing noncanonical 
*-binary representations. We shall in fact prove that all *-binary representations 
of ar, 0 K ag K 1, arise as possible outputs of this algorithm. Therefore, this 
may be modified to be a deterministic algorithm which produces all possible 
initial segments of *-binary representations of ar. 

Algorithm 3. Let 

= E b12=2?1, 
n= 1 

be a binary representation of 0 .a ? 1. Let 

alg = c 
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and, for n > 1, let 
0O if an< n -1, 

dn := 0 or I if an = n or an =n + 1, 
t 1 if an > n +2 

and 
an+1 := 2(an -ndn) + bn 

Then 
00nd 

a} = Z 2n E 
n=1 

Proof. As was true for Algorithm 1, equation (2.1) reduces the proof to showing 
that an/2n -__ 0 for all possible outputs of the algorithm. This follows from the 
inequality 0 < an < 2n + 1, which can be proved by an easy induction. E 

Suppose at some stage during a run of the algorithm, an = n or an = n + 1. 
We shall refer to setting dn = 1 as the canonical choice, since always making 
this choice reduces Algorithm 3 to Algorithm 1. We shall refer to setting dn = 0 
as cheating, since this does not correspond to following a greedy algorithm. 

As an example, we run the algorithm on 1/4 = .01000 ... three times: canon- 
ically, cheating at the first opportunity, and cheating at the first two opportuni- 
ties. This yields 

dn 0 0 0 1 0 0 ... 

an 0 1 2 4 0 0 ... 

bn 0 1 0 0 0 0 ... 
n 1 2 3 4 5 6 

dn 0 0 0 0 1 1 0 0 ... 

an 0 1 2 4 8 6 0 0 ... 

bn 0 1 0 0 0 0 0 0 ... 

n 1 2 3 4 5 6 7 8 

cheat 

dn 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 ... 

an 0 1 2 4 8 6 12 10 4 8 16 10 20 14 0 ... 

bn 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 
n 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 

cheat cheat 

Thus, 

1 4 

4 24 

1 5 6 

4 25 26' 

1 5 7 8 1 1 13 14 

4 25 27 28 211 213 214 
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Notice that the input to the algorithm is the given binary representation of 
ao, not a. For diadic rationals, the choice of binary representation can affect 
the outcome of the algorithm. For example, running the algorithm on 
.0011 ... and cheating at the first opportunity, produces an infinite *-binary 
representation: 

0 0 0 0 1 0 1 0 1 1 1 ... 
0 0 1 3 7 5 1 1 9 19 21 23 ... 
0 0 1 1 1 1 1 1 1 1 1 ... 

1 2 3 4 5 6 7 8 9 10 11 
cheat 

1 5 7 ?? n 
4 25 27 E2 

n=9 

Proposition 4. Suppose 0 < a < 1 . 
(a) If a is not a diadic rational, then every *-binary representation of a arises 

as a possible output of Algorithm 3. 
(b) If a is a diadic rational, and 

00 

a = E gnn/2n, gn = 0 1, 

n=1 

is a *-binary representation of a, then either there exists an N for which gn = 1 
for all n > N, or the sequence {gn} is a possible output of Algorithm 3 run on 
the terminating binary representations of a. 

Proof. If a is not a diadic rational, it has a unique binary representation 
00 

a=Zbn/2 , b =0, 1. 

n=1 

Let 
00 

a=E gn/2 , gn = 0 1, 

n=1 

be a given *-binary representation of a. To simplify equations, we introduce 
the notation 

00 00 

Bn = E bm/2m Rn= E gmm/2m. 
mnn+ 1 m=n+1 

If a1 > 2,then al = b1 = l and cheating is allowed. Cheating causes an 
output of di =0, while not cheating causes di = 1. Thus we may arrange to 
have d1 = g9. If, on the other hand, a < 2 , then no cheating is possible since 
a= b =0 , and the output is da =0. However, as I > a(, this term cannot 
occur in the *-binary representation, i.e., g, = 0. 
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Let us assume that some run of the algorithm has produced dk = gk for 
k = 1, ... , n - 1 . We shall endeavor to show that, by cheating if allowed and 
necessary, the algorithm will output dn = gn . 

In the present context, equation (2.1) now reads 

n-imgm an 
a=Z 2m 2 

m=1 

or equivalently 
(3.4) an =2 nRn l2nBn 
Since a is not a diadic rational, we have only to consider the following three 
cases: 

(i) Rn < n12n 

(ii) n/2n < Rn-1 < (n + 2)/2n, 
(iii) Rn- 1 > (n + 2)/2 . 
In case (i), no cheating is possible because, by (3.4), 

a =2 R -2 2B <2 nR < n. 

The algorithm must produce d = 0. Also, Rn-1 is too small to contain the 
summand n/2 , so gn = 0 = dn. 

In case (ii), we add the inequalities 

n < 2nRn~ < n +2,5 -1 < -2 nB <0 

and obtain, by equation (3.4), 

n- 1< an <n+2. 

But an is an integer, so n < an < n + 1, and cheating is possible. Thus, we 
may arrange to have the output dn equal gn. 

In case (iii), we have 

an =2 nR -2nB > (n + 2)-I 

and, since an is an integer, 
an > n + 2. 

No cheating is possible, and the output must be dn = 1. If gn were to equal 
zero, then 00 

Rn-1 = Rn -L 2m 2n 5 

m=n+l1 
a contradiction. Therefore, gn = 1 = dn . This completes the proof of (a). 

Let 
N 

a 
=ZE bn1/2 

, 
bn = 0? 1, bN = 1, 

n=l 
be the terminating binary representation of the diadic rational a , and let 

00 

>=Eg9n/2l , gn =, 1, 

n=l 
be a given *-binary representation. 
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Notice that 
0 <2nBn < I for n= 1, ...,5 N- 1, 

and since an is an integer, equation (3.4) implies that 

2n Rn 0 Z for n=l,..N - I. 

Therefore, for n < N - 1, one of cases (i), (ii) or (iii) above must hold, and the 
proof of part (a) works here to show that some run of the algorithm produces 
dn= gn for n= 1,...,N-1. 

We now show that, unless the gn are eventually all ones, one may prove by 
induction that gn n > N, are possible outputs. Suppose the algorithm has 
produced dk = gk for k= 1, ..., nfor some n > N- I. At this stage, 
Bn = O, so 

Rn-1 = an/2n. 

We must now consider four cases: 
(i) Rni1 < n12 

(ii) Rn-1 = n/2n or (n + 1)/2n, 
(iii) Rn- 1 > (n + 2)/2n, 
(iv) Rn- 1 = (n + 2)/2 . 
Cases (i), (ii) and (iii) are handled exactly as in the proof of part (a), except 

that now the required inequalities for an are trivial to obtain. 
In case (iv), the algorithm is forced to produce dn = 1. If gn= 1, the 

induction may continue. It is possible to have gn = 0, but then 

n+2R - m _ n + 2 
-n n-1 - n= 2 ~~~m=n+ 1m m=n+ 1m 

which forces 9n+1 = gn+2 = = 1. O 

Proposition 5. Any number of the form 

0.02k 002k-1I Z 2k or 3 2k 1 N>k2, 
k=N2 k=N 2 

has a unique *-binary representation (as above). In particular, the first few 
of these, 5/24, 13/288, 1/72... and 17/72, 23/288, 29/1152... , have 
unique *-binary representations. 

Proof. We use the identity 

k=N+I12 3 (22 9 (22N 

to prove inductively that 
0. 2k 

k- 22k 
k=N 
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is the unique *-binary representation. Since, from (3.5), 
0. 2k 2N?1I 
E 22k< 22N+ 1 N > 2, 

k=N+ I 

it is not possible to replace an odd *-digit by a 1. (This also shows why the 
initial *-digits must be zero.) Since 

2N 00 2k 0oak 
22N?E 22k > E 2k N > 2, 

k=N+ 
2 

k=2N+ 
2 

it is not possible to replace any even digit by a zero. (What we have really 
done is construct numbers for which a, 7 n or n + 1 and used the previous 
proposition.) The odd case is similar. D 

We know, by Corollary 2, that if a is rational and 
0.0 

gn 0e = E _9 

n=1 

is a nonterminating *-representation, then 

lim sup (gn+1- gn) < 
n 1092 gn 

We want to show that, given Conjecture 1, this is best possible. 

Proposition 6. If Conjecture 1 holds, then every diadic rational a c (O 1) has 
a representation 

00 

e= 2 g= 

n=1 

where 

lim sup (gn+- gn) >1 
n 1092 gn 

Proof. Consider the representation of (2 - a) that is constructed by expanding 
(2 - a) by Algorithm 1 and then systematically replacing the final 1 in the 
(terminating) representation as described in part (b) of Proposition 3. Note 
that, if a one in the Nth place is modified in this fashion, it gives rise to a 
sequence of at least log2 N ones following it. This gives a representation of 
(2 - a) with "logarithmically long" sequences of ones. However, if 

00nd 
2 -_ =Z n 

n=1 

then 
00 

n(l - dn) a= 2 n 
n=1 

and this provides the representation of a with logarithmically long sequences 
of zeros. O 



NUMBERS OF THE FORM E gn/29n 391 

It seems possible that many other rationals have logarithmically large gaps. 
We computed the first million *-binary digits of the canonical representation 
of 1/3 and encountered exactly 2 strings of 17 consecutive zeros (starting at 
287,658 and 969,239). We have not ruled out the possibility that all rationals 
have periodic *-binary representations, but this seems unlikely. If the canonical 
*-representation of 1/3 is periodic, then either the period is greater than 1/2- 
million or it starts after the 1/2-millionth digit. 

4. GENERAL BASES 

Let c be a positive integer (> 2). The base c analogue of *-binary repre- 
sentations is contained in 

Algorithm 4. Let c be an integer (> 2). Let 

?e = n , Bn =0? 1 , . .. , c- 1. 

n=1 

Let 
al -B and an+1 = c(an mod n) + Bn. 

Then 
0.0nD 

}=E' cnn 5 

n=1 

where 
0 if an < n, 
1 if n <an 2n, 

Dn = 2 if 2n < an < 3n , 
Dn1 

c - I if (c - 1 )n < an . 

Once again, this is the "greedy algorithm". The details are similar to those 
of ?2. The analogue of Conjecture 1 is 

Conjecture 2. Let q be any integer and c be any integer > 2. Let 

asn := ?J and an+ 1:= c(an mod n), n = m, m + 1, ... 

(where (a mod n) is chosen in [0, n - 1]). Then the above iteration always 
terminates at zero. 

Corollary 3. Conjecture 2 implies that every c-adic rational has a terminating 
representation as in Algorithm 4. 

The analogue of Proposition 1 is 

Proposition 7. For 
M+2 

m=. 1 M, M=1,2, 
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we have 

rn-i ( + 
c-lok (4.1) r n- 

( 

C k=m C 

This can be derived directly or by a generating function argument like that 
of ?2. Proposition 3 has its obvious analogue. As before, this shows that *- 
representations base c are not unique and that there exist numbers with un- 
countably many different representations. The limited numerical evidence for 
Conjecture 2 is presented in the next section. 

5. MATTERS NUMERICAL 

Algorithm 5. Let c > 2 and M be positive integers, and let 

an+1 := c(an mod n), 

where the initial value is 

am := M. 

Here as before, (an mod n) is the principal representation in [0, n - 1]. 

We will denote this by ALGOc(m, M). We say that ALGOc(m, M) termi- 
nates if ah = 0 for some h > m, and we say that ALGOC(m, M) terminates 
at H if H is the smallest such h. The global termination function Tc is de- 
fined so that Tj(m) is the smallest integer (if it exists) so that ALGOc(m, M) 
terminates for all M. Note that T7(m) is a nondecreasing function of m . The 
conjectures then become 

Conjecture 3. For c, m > 2, Tc(m) is finite. 

This conjecture seems hard. Though not directly related, it has a similar feel 
to the 3x + 1 conjecture [5]. 

Some suggestive numbers follow. 
c = 2 

T2(l) = 2 
T2(2)= 5 

T2(3)= 9 

T2(4) = T2(5) = 15 
T2(6) = T2(7) = 25 
T2(8) = T2(9) = 33 

T2(10)... T2(53) = 393 
T2(54) T2(1000) = 12, 231 
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c = 3 

T3(1) = 2 

T3(2) = 4 

T3(3)... T3(5) = 10 
T3(6) ..T3(14) = 31 
T3(15) ..T3(20) = 43 
T3(21)... T3(29) = 121 

T3(330). T3(41) = 424 

T3(42). T3(100) = 853 

c= 10 

T10(l) = 2 

T10(2) ... T10(4) = 6 

T10(5) ... T10(9) = 11 

T1(10)(1O) T10(19) = 26 

T10(20)... T10(29) = 51 

T10(30) ... T10(69) = 106 

T10(80).. T10(74)= 111 
T 0(75) ... T(79) = 113 

T10(80) T1O(1 50) = 26 1. 

We collect some of this and some additional computational experience in the 
following proposition. 

Proposition 8. For c = 3, 4, 5 and 10 and m < 100, ALGOc(m, M) termi- 
nates for all M. 

For c = 2 and m < 1000, ALGOc(m, M) terminates for all M. 

Algorithm 3 (with Proposition 4) gives a very satisfactory algorithm for com- 
puting minimum length *-representations of diadic-rationals. We illustrate this 
on the question of minimum length rewritings of (n - 1)/2n 1 using the fact, 
once again, that 

n- I n n -2 
(5.1) 2n-1 n + n 

and considering minimum length rewritings of (n - 2)/2n. Note that, if Al- 
gorithm 1 applied to (n - 2)/2n terminates at N without generating an a 
n < N ,with an = n + 1 then this is, in fact, the minimal representation. If at 
some point, an = n + 1, then we branch as in Algorithm 3 by setting dn = 0 
instead of 1, and continue. In practice, very few branches are required until we 
have exceeded N. The following table collects some of the numerical experi- 
ence. It presents the lengths (i.e., numbers of terms and termination term) for 
minimalrepresentationsof (n-2)/2f forvarious n. Often,thoughnotalways, 
the greedy algorithm provides this representation. Notice that, with (5.1), this 
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provides minimum length solutions for the Diophantine equation (1.1). (The 
number of terms is one more than that in the table while the largest term is 
one less than the termination term.) It is perhaps surprising that such an easy 
algorithm exists for generating minimal representations. 

*-binary expansions of (n - 2)/2n 

Algorithm 2 minimum rep. #of branches 
n terminates at terminates required 

15 393 (186 TERMS) 393(180 TERMS) 2 
16 23 (4 TERMS) 0 
17 393 (184 TERMS) 47(16 TERMS) 1 
18 33 (7 TERMS) 0 
19 33 (6 TERMS) 0 
20 33 (7 TERMS) 0 

122 12231 (6065 TERMS) 321(101 TERMS) 1 
5000 7183 (1065 TERMS) 1 
5001 12231 (3612 TERMS) 2 
5002 5601 (286 TERMS) 1 
5003 6273 (642 TERMS) 0 
5004 12231 (3620 TERMS) 2 
5005 12231 (3590 TERMS) 0 
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